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INTRODUCTION

The convergence properties of the Pade table of eZ are, in some sense,
a model of regularity [3, pp. 244-248]. The proof of Pade's fundamental
theorem relies so heavily on specific properties of the exponential function
that, for more than 60 years, no extension of the result seems to have been
noticed.

Two classes of functions, whose tables are as well behaved, have recently
been studied: one of them by Arms and Edrei [1], the other by Edrei [2].
The present note may be considered as an application of both [1] and [2].
It shows that real sine-polynomials and real cosine-polynomials whose zeros
are all real may be treated as completely as eZ

•

Ratios of such trigonometric polynomials behave with similar regularity
provided

(i) all the zeros and poles of the ratio under consideration are simple,

and

(ii) zeros and poles are interlaced so that between any two zeros there
lies exactly one pole and between any two poles exactly one zero.

The simplest functions covered by our theorem are

(cos z)",
tan z

z
(k an integer),

and their reciprocals.
It is convenient to introduce at this point some notations and definitions.

Their adoption will significantly shorten our statements and proofs.

* The research of the author was supported by a grant from the National Science
Foundation GP-33175
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PADE TABLES OF TRIGONOMETRIC FUNCTIONS

1. NOTATIONS, DEFINITIONS AND STATEMENT OF RESULTS

Let
00

279

L ajZ
j = A(z)

j~O

be a power series.

(1.1)

DEFINITION 1. Given an ordered pair (m, n) of nonnegative integers,
we say that two polynomials Pmn(z), Qmn(z) are Pade polynomials of the
entry (m, n) if

(i) Qmn(z) =t=- 0, degree Qmn :S; n;

(ii) either Pmiz) == °or else degree Pmn :S; m;

(iii) A(z) Qmn(z) - Pmn(z) = zm+n+1J(z),

where J(z) is a series of nonnegative powers of z.
Pade polynomials of every entry always exist [3, pp. 235-236] and the

rational function

is uniquely determined by (m, n) and (1.1).

Placing Rmiz) in the nth row and mth column of an array, we obtain
the Pade table of (1.1).

Set
(j = 1,2, 3, ...), (1.2)

and, with every pair (m, n), associate the polynomial

Z Z2 zn

am+1 am am- 1 arn~n+l

Amn(z) = am+2 am+1 am am- n+2 (Amo(z) == 1), (1.3)

am+n am+n-l am+n- 2 am

and the Hankel determinant

If, for all m ~ 0, n ~ 0,

A(n) --L 0
m -r ,

we say that the table of A(z) is normal.

(1.4)
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It is immediately verified that

aj aj-l aj~2

am+1 am am- 2
A(z) Amn(z) = I zj am+2 am+1 am

j~O

am+n am+n-l

aj-n
am - n+1

am-n+l (1.5)

which may be rewritten as

A(z) Amn(z) - otmiz) = (-It A::t1) zm+n+l + "', (1.6)

where otmn(z) is the polynomial formed by those terms of the expansion
(1.5) for which 0 ~ j ~ m.

DEFINITION 2. We say that the Pade polynomials of the entry (m, n)
are essentially unique if

(1.7)

The above definition and terminology are justified by the following remark
[3, p. 236], which plays a fundamental role.

Remark 1. Let (1.7) hold and let Pmn , Qmn be Pade polynomials of the
entry (m, n). Then, there exists some constant g = gmn =1= 0 such that

Notational convention. Consider, besides A(z), other power series,

B(z) = I bjzj,
j~O

Expressions analogous to

D(z), ... , T(z).

A(z), A(n)
m,

obtained by replacing the as' by bs', ..., ts' will be denoted, respectively, by

B(z),

T(z), r(n)
m,

P4mn(z),

From this point on we take the above convention for granted and use
it systematically without reminding the reader of the meaning of the symbols.
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If the Pade polynomials are essentially unique, we use the following
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NORMALIZATION. Select 0': = O':mn =F 0 so that 1 is the coefficient of the
least power of z actually present in

The polynomials Amn(z) and

are said to be the normalized Pade polynomials of the entry (m, n).

If Amn(z) = 0, the normalization process requires closer study [3, p. 237].
We need not discuss this singular case, which does not present itself here.

We denote, by

C(z) = Uo + Ul cos Z + U2 cos 2z + ... + UN cos Nz, (1.8)

a real cosine-polynomial and require that all its zeros be real. [Multiple
zeros are permissible.]

Similarly,

S(z) = WI sin z + W 2 sin 2z + ... + WN sin Nz (1.9)

is a real sine-polynomial. We assume that all its zeros are real and do not
exclude the possibility of multiple zeros.

The behavior of C(z) and S(z) at the origin is of some importance. In
order to take account of it we "normalize" our trigonometrical sums and
always write

S(z) 00 •

B(z) = 2,,+1 = L bjz'
z j~O

Whenever we consider quotients such as

(aO = 1, fL ~ 0),

(bo = 1, fL ~ 0).

(1.10)

(1.11)

M(z) = S(z)jC(z), (1.12)

we introduce additional restrictions and proceed as follows.
Let O':k-l , ~k (k = 1,2,3,... , N) be 2N real quantities such that

o = 0':0 < ~l < 0':1 < ~2 < 0':2 < ... < ~N-l < O':N-l < ~N < 7T. (1.13)

M(z) = [Kl sin z TI: (cos z - cos O':k)]/[KOII (cos z - cos ~k)]' (1.14)
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We put

N-l

Kl = TI (1 - cos CXk)-l,
k~l

N

K O = TI (1 - cos {3k)-l.

k~l

(1.15)

and also

M(z) W

T(z) = --7- = L tiz;
- ;~o

(
tan z )2 W .

V(z) = -- = L Viz}
Z i~O

(to = 1),

(VO = 1).

(1.16)

(1.17)

We prove

THEOREM 1. Let

A(z), B(z), V(z), T(z) (1.18)

be thefunctions defined above.

1. Then all the Pade polynomials of the tables of A(z), B(z), V(z), and
T(z) are essentially unique.

II. Let

(1.19)

be two sequences ofpositive integers such that, as A-+ 00,

(1.20)

If A is restricted to those values for which mAnA is even, we have, for the nor­
malized Pade polynomials,

(1.21)
N

TmAnA(Z) -+ KO TI (cos z - cos 13k),
k~l

and

uniformly in any bounded region of the complex plane.
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If A is restricted to those values for which mAnA is odd, (1.21) and (1.22)
are to be replaced by similar relations in which the values of all the limits
are multiplied by z.

In the proof of the above result the behavior of the tables of A(z), B(z),
and V(z) will be deduced from the convergence theorem of Arms and Edrei
[1, p. 4] concerning tables generated by sequences which are totally positive
in the sense of Schoenberg [4, pp. 216-219]. The treatment of T(z) depends
on parts of the convergence theorem of [2]. An immediate application of
the same convergence theorem leads to the following result which we state
without proof.

THEOREM 2. Let o/(z) be a real meromorphic function of finite order.
Assume that

(i) o/(z) is periodic, with a real period;

(ii) the zeros and poles of o/(z) are all real, simple, and interlaced;

(iii) 0/(0) = o.
Consider the Pade table of the expansion

and let {m(A)}~I' {n(A)}~1 satisfy the conditions (1.20) as well as

meA) + n(A) = odd integer (,\ = 1,2,3,...).

Then

(m = meA), n = n(A), A = 1, 2, 3, ...)

and

uniformly on any compact set which omits the poles of U(z).

Our conditions on o/(z) may be stated in the following, equivalent form.
Normalize the period of o/(z) so that it is Tr and let the zeros IX and the

poles f3, in [0, Tr), be arranged so that

o = IXI < f31 < IX2 < f32 < IX3 < ... < IXN < f3N < Tr (N:;:?: 1).

Then the class offunctions o/(z) coincides exactly with the class offunctions
of the form

(0 =1= K = real constant).
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Our proofs require the following elementary remark, which may have
some independent usefulness.

LEMMA 1. Consider simultaneously, the expansions of the two functions

D(z)

where k ;?: 1 is an integer.

J. Then

(D(O) # 0), F(z) = D(Zk),

F(kq) = {D(q)},·
kp .])

for all pairs (p, q) of nonnegative integers.

II. Assume that, for all m ;?: 0 and all n ~~ 0,

(1.23)

(1.24)

and let Rmn(z) denote the approximant of the entry (m, n) of the Pade table
of F(z). Then

Rmn(z) = 9 pq(Zk)/D pq(Zk),

for all (m, n) of the k X k-block defined by

(1.25)

kp ~ m ~ kp + k - I, kq ~ n ~ kq + k - 1. (1.26)

The approximant (1.25) is never repeated in any other block.

III. If k = 2, and (1.24) holds, the Pade polynomials of all the entries
of the table of F(z).= D(Z2) are essentially unique and

F2P.2q{Z) ~ P2P+L2q(Z) == P2P.2q+l(z) ~ Dpq{Z2),

P2P+L2Hl(Z) c= ZD pq(Z2).
(1.27)

The analogous relations also holdfor the Pade numerators so that (17) remain
true with F and D replaced by .'F and 9, respectively.

For k ?o 3, Assertion III becomes more complicated. For instance, the
Pade polynomials of the entries (3p + I, 3q + 1) of the table of F(z) = D(Z3)
are not essentially unique.

Exchanging the roles of the Pade numerators and denominators, we
deduce from Theorem 1 the convergence properties of the tables of the
reciprocals

l/A(z), l/B(z), (z cot Z)2, l/T(z). (1.28)

The replacement of z by iz would enable us to restate our results in terms
of hyperbolic functions.
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Our proof also yields
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COROLLARY 1. The Pade tables of the functions in (1.18) and (1.28) have
the 2 X 2-block property described in Lemma 1.

It is clear that Theorem I and its corollary solve completely the con­
vergence problem of the Pade tables of the functions under consideration.

2. PROOF OF ASSERTION I OF LEMMA I

We apply induction over k. Assume that (1.23) holds for some k :? 1
and let

G(z) = D(Zk+l).

The first row of the determinant G\k~i~)~) is

d"OO ... Od,,_lOO ... Od,,_200 ... Od,,_HIOO ... 0,

where each d is followed by k zeros. Consider the columns of this deter­
minant headed by one of the q quantities,

They form a matrix with (k + I)q rows; only q of these rows contain d's;
all others are formed exclusively by zeros. Hence, by Laplace's expansion
theorem,

(2.1)

Since (1.23) is trivial for k = I, (2.1) and an obvious induction show that
(1.23) holds for all k :? 1.

3. PROOF OF ASSERTION II OF LEMMA

Let m and n satisfy (1.26). Put

m = kp + fL, n = kq + v, T = min(fL, v), (3.1)

o< fL < k - I, 0 < v < k - I, (3.2)

DpaCz)D(z) - ~pq(z) = (-I)q D;a:l1)Z,,+Hl + .... (3.3)

In (3.3), replace z by Zk and multiply the resulting relation by ZT. This yields

zTD"q(Zk)F(z) - ZT~"q(Zk) = (-I)q D;a:l1)Zk{,,+q)+k+T + "', (3.4)
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where, by (3.1) and (3.2),

m + n + 1 = k(p + q) + fL + v + 1 ~ k(p + q) + k + T. (3.5)

In view of (1.24),
zTDpq(Zk) "¥:- 0,

and hence (3.5), the obvious relations

degree{zTDpq{zk)} ~ kq + T ~ kq + v ~ n,

degree{zT.@pq(zk)} ~ kp + T ~ kp + fL ~ m,

and the uniqueness of the Pade table yield (1.25).
Assume now that two different blocks defined by (1.26) contain the same

approximant. This means that there exist two distinct pairs of nonnegative
integers, say (p, q) and (j, I), such that

(3.6)

This is impossible because, by (1.24), the table of D(z) is normal and
(3.6) violates this normality [3, p. 243J. The proof of Assertion II of Lemma 1
is now complete.

4. PROOF OF ASSERTION III OF LEMMA 1

If
(4.1)

the matrix obtained by deleting the first row of the determinant in (1.3)
has rank <no

Hence (4.1) implies

and, in view of (1.5), also

A(n+1) = °m , A (n+1) - °m+1 - .

We thus see that (1.23) and (1.24) imply

F2P ,2q{Z) "¥:- 0,

F2P+1.2q{Z) "¥:- 0,

F2P ,2Q+1(Z) "¥:- 0,

F2P+1.2Q+1(Z) "¥:- 0,

because

because

because

because

F~;q) = {D~q)}2 of=- 0,

D(2q) = {D(q) }2 -I- °£2p+2 p+1'-,

p(2Q+2) = {D(rJ+1)}2 -I- °
2'P 1J -r-,

p(2Q+2) = {D(Q+1)}2 -I- °2P+2 P+1'-'
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We have thus proved that all the Pade polynomials of the table of F(z) =
D(Z2) are essentially unique. This uniqueness and the normalization which
we have adopted readily yield (1.27) and complete the proof of Lemma 1.

5. THE PADE TABLES OF A(z) AND B(z)

The most general real cosine-polynomial having all zeros real is of the form

K

C(z) = K(COS Z - I)" n (cos z - cos exk)"k,
k~l

(i) where the ex's are real and satisfy

(5.1)

(ii) K is a real constant;

(iii) fLk (k = I, 2, ... , K) are positive integers; fL ~ 0 is an integer
which is 0 if C(O) =1= O.

The most general real sine-polynomial having all its zeros real is of the form

S(z) = C(z) sin z,

where C(z) is given by (5.1).
We set

(5.2)

A(z) = C(Z)fZ2", (5.3)

and select K so as to satisfy the normalization

A(O) = I or B(O) = 1. (5.4)

Consider the well-known product expansions

00 2

sin z = z n(I - (/:)2)'

. Z Z2 00 ( Z2) 2
cos Z - I = -2 sm2 "2 = - 2 nI - (2/17)2 ,

to which we add the slightly more general one,

(5.5)

(5.6)

+00 2

cos Z - cos ex = (1 - cos ex) zlI
oo

(I - (2/17 z+ ex)2) (0 < ex ~ 17). (5.7)
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We now introduce the new variable

(5.8)

and examine the auxiliary functions

00 , )-2" K +00 ')-"k 00 •

D(,) = [! (I - (2/17)2 IT IDoo (I - (2/17 + CXk)2 = to dj'J,

and

It is immediately deduced from (5.1)-(5.10) that

(5.9)

(5.10)

A(z) D(z2) == I, B(z) G(Z2) == 1. (5.11)

The sequences {dj}~o and {gj}~o are totally positive in the sense of
Schoenberg [4, p. 219J and by the convergence theorem of Arms and Edrei
[I, p. 4J, we have

(i) m::> > 0,

for all m ~ 0, n ~ 0;

(ii) if {P,,}::l and {q,,}::l are two sequences of positive integers such
that, as a -+ 00,

then

P" -+ 00,

D1J",q"C') -+ I/DC'),

(J1J",q"C') -+ I/GW,

!!J1J",q,,(,) -+ I,

@1J",q"W-+ I,

(5.12)

uniformly in any bounded region of the '-plane.
Using Assertion III of Lemma I and (5.11), we obtain immediately the

assertions of Theorem 1 concerning A(z) and B(z).

6. THE PADE TABLE OF (tan Z/Z)2

Consider two special cases of Theorem 1 which have been completely
treated in the preceding section:

A(z) = cos2 Z,

and
A*(z) = [(1 - cos z)jz2](1 + cos z) = [(sin z)jzJ2.
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We set

so that

Introduce two auxiliary functions Heo and L(s):
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(6.1)

(6.2)

(6.3)

00 00

yeo - s = Leo = L ljsj = I + (Yl - In + I yjSi. (6.5)
j~O i~2

In view of (6.3)

H(Z2) = (tan2 Z)/Z2,

and hence

(6.6)

(H(O) = L(O) = 1). (6.7)

Since {Xj}j and {Yj}j are totally positive, we have

H;:) = X;:ll > 0 (m - n + 1 ~ 0),

L~m) = y~m) > 0 (n - m + 1 ~ 2).

In view of (6.7) we have

H~n) = (_l)mn L~m).

(6.8)

(6.9)

(6.10)

[This is, in different notation, the relation (l.7) of [1, p. 8]. There is a mis­
print in (1.7); the correct relation is aonA}:) = bomB~m).]

From (6.9) and (6.10) we deduce

(-1 ~ m - n), (6.11)

which, compared with (6.8), shows that the table of H(S) is normal. Hence,
by Lemma 1, the table of

V(Z) = H(Z2) ,

has the 2 x 2-b10ck property and all its Pade polynomials are essentially
unique.
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To determine the Pade polynomials of the table of H(D we first rewrite

XWXrn+l.nW - ,o[rn+l.nW = (_l)n X~~:'}) srn+n+2 + ...
in the form

and observe that, if

we have

and consequently

m + 1 - n ;? 0, (6.12)

We have thus determined those normalized Pade polynomials of the table
of H(D whose entries are characterized by (6.12).

Similarly, for

n ;? m + 1,

(YW - s) YnrnW - (WnrnW - SYnrnW)

= H~n YnrnW - (i2?InrnW - SYnrn(O) = X
/
srn +n+1 + ...

(6.14)

and, since the Pade polynomials of the table of H(S) are essentially unique,
there exists some constant g =1= °such that

Hence

(6.15)

provided (6.14) holds. Comparing (6.12) and (6.14), we see that all the
Pade polynomials of all the entries of the table of H(S) are known.

Assume now that {Pa}a, {qa}a are sequences of positive integers satisfying
the conditions (5.12). Then, by the convergence theorem of Arms and Edrei,
we have, in view of (6.15) and (6.3),
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Similarly, using (6.13) instead of (6.15), we find
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From Lemma 1, we immediately deduce the convergence properties of
the normalized Pade polynomials of (tan Z(Z)2.

7. QUOTIENTS OF TRIGONOMETRIC POLYNOMIALS EXPRESSED AS SUMS OF

SIMPLE FRACTIONS

The quotient of trigonometric polynomials M(z), defined by (1.13) and
(1.14), has period 27T and, in the strip

-7T :c:;: X < 7T

it has exactly 2N simple poles:

(x = Rez),

At -f3j and f3j it has the same residue rj given by

r; = - [K1IT (cosf3j -cos cxk)]I[KofI (cosf3j -cos 13k)] = -Pi <0.

k,!,; (7.1)

The fact that rj < 0 follows immediately from (7.1) and the interlacing
of zeros and poles expressed by (1.13).

The elementary expansion

~ lcot (Z -; 13k) + cot (Z i 13k)!

shows that
N

M(z) - I rkrPk(Z) = .Q(z)
k~l

is entire, periodic, and bounded outside disks of positive fixed radius with
centers at ±f3k + 217T (k = 1, 2,..., N; I = 0, ± 1, ±2, ±3,...).
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Hence Q(z) reduces to a constant which is necessarily zero because Q(z)
is an odd function.

Returning to T(z) defined by (1.16) and setting again

we find

+00 N

= 2 l~'" 21 ((3k + ;;/)2 _, = Zm,

where, by (7.1), Pk > °(k = 1,2'00" N).

8. THE PADE TABLES OF Zm AND T(z)

The positive quantities

(7.2)

(k = 1,2'00" N; / = 0, ±I, ±2,oo.) (8.1)

may be arranged and renumbered so that they form a single increasing
sequence

(8.2)

We modify correspondingly the notation of the quantities 2Pk and rewrite
(7.2) in the form

where

(8.3)

1fk > ° (k = 1, 2, 3,...), (8.4)

The relations (8.3) and (8.4) enable us to apply the convergence theorem
of [2] which asserts the following.

I. There exists a positive sequence {'Yk}~~l such that

and such that

(8.5)
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II. The Pade table of Zm is normal.

III. If {Po}':l and {qo}:=l are two sequences of posItive integers
satisfying the conditions (5.12), we have for the normalized Pade polynomials
ofZm:

(8.6)

(8.7)

The convergence in (8.6) and (8.7) is uniform in any bounded region of
the complex plane.

Since the set (8.1) coincides with the sequence {Wk}~=l , we have by (1.14),
(1.15), (1.16), and (5.7)

sin z N-l en ( 7
2 )

K1 -- TI (COS z - COS CXk) = TI I ~ --- .
Z k=l Ic~l Ylc

We now use Lemma 1 exactly as in the corresponding proofs at the end
of Sections 5 and of 6. This yields the behavior of the Pade table of T(z)
and completes the proof of Theorem 1.
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